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Flow Control Problem



Objective

Feedback Flow Control

Current Strategy:

• Compute the (unstable) steady-state solution (vss, pss)

• Write v = vss + v′ and p = pss + p′

• Linearize the system about this steady-state (Oseen equations)

v̇′ = −vss · ∇v′ − v′ · ∇vss +∇ · τ(v′)−∇p′ + Bu

0 = ∇ · v′

• Use model reduction to find a smaller surrogate system

• Design the (linear) feedback control law

• Test the performance in the full nonlinear flow equations
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Model Reduction for this study (w/ Serkan)

• Discretize the Oseen equations and controlled outputs (FEM)

• G(s) = C(sE− A)−1B

• Use model reduction by tangential interpolation:

Stykel 04; Mehrmann & Stykel 05; Benner & Sokolov 05; . . . ;

Gugercin, Stykel & Wyatt 13.[
σiE11 − A11 − AT

21

−A21 0

][
vi
z

]
=

[
B1bi

0

]
,

• Apply projection matrices

Er = WTEV, Ar = WTAV, Br = WTB, and Cr = CV

• Gr (s) = Cr (sEr − Ar )
−1Br

• Flow simulations not req’d; Input independent; Computational cost

is equivalent to several implicit time-steps.
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Model Reduction for this study (w/ Serkan)

• The full-order model had n1 = 111, 814 and n2 = 14, 336.

• The reduced model used r = 142.

• The relative error in the H∞ norm was 1.5154× 10−5.

• The reduced model was used to design the control.

• The projection matrices are used to implement the control on the

full-order quadratic model.
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Twin Cylinder Example

At Re = 60: Linear feedback control of the cylinder angular velocities

=⇒
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Twin Cylinder Example

At Re = 67: Linear feedback control of the cylinder angular velocities

=⇒
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Eigenvectors

Re = 60: λ1,2 = +0.04019± 0.7468i

Re = 67: λ1,2 = +0.06217± 0.7535i
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Eigenvectors

Re = 60: λ3 = −0.006040

Re = 67: λ3 = +0.002863
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Wake Stabilization by Cylinder Rotation

SB - Single Bluff-Body Vortex Shedding
AS - Asymmetric Steady Flow
IP - In-Phase Synchronized Vortex Shedding
AP - Antiphase Synchronized Vortex Shedding

Linear stability analysis agrees with: M. Carini, F. Giannetti, and F.

Auteri, First instability and structural sensitivity of the flow past two

side-by-side cylinders, J. Fluid Mechanics, 2014.
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Nonlinear Feedback Control



Objective

Feedback Flow Control

Linear feedback control can be effective

• It works well to stabilize the steady-state solution, . . .

• BUT the stability region may be very small.

Thus, we are motivated to consider nonlinear feedback for these problems.

We need new sets of computational tools:

• model reduction for systems with quadratic nonlinearities, and

• computation of nonlinear feedback laws.
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Optimal Control Problem

Find a control u(·) with u(t) ∈ Rm that solves

min
u

J(z , u) =

∫ ∞
0

g(z(s), u(s)) ds

subject to

ż(t) = f (z(t), u(t)), z(0) = z0 ∈ Rn.

Let the value function be v(z0) = J(z∗(·; z0), u∗(·)) and assume the

optimal control is given by

u(t) = K(z(t)).

For f , g , and v smooth enough, the feedback relation satisfies the

Hamilton-Jacobi-Bellman partial differential equations

0 =
∂v

∂z
(z)f (z ,K(z)) + g(z ,K(z))

0 =
∂v

∂z
(z)

∂f

∂u
(z ,K(z)) +

∂g

∂u
(z ,K(z)).
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Optimal Control Problem

Ideally, we could solve the HJB equations simultaneously for v and K.

The feedback law u(t) = K(z(t)) is the quantity of interest.

The value function v(z) can serve as a Lyapunov function, providing

information about the stability region around the steady-state solution.

However, these are notoriously difficult to solve as the HJB equations are

nonlinear PDEs to be solved in Rn (or after model reduction Rr ).

Instead, we shall look at constructing polynomial approximations:

v(z) ≈ v [2](z) + v [3](z) + · · ·+ v [d+1](z)

and

K(z) ≈ k [1](z) + k [2](z) + · · ·+ k [d ](z).
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Simple Nonlinear Feedback Example

We seek a control u(·) that minimizes

J(z , u) =

∫ ∞
0

z2(t) + u2(t)︸ ︷︷ ︸
g(z(t),u(t))

dt

subject to the dynamics

ż(t) = −0.1z(t)− 4z2(t) + z3(t) + u(t), z(0) = z0 ∈ R1.

We consider replacing u(t) with either

u(t) = k1z(t)︸ ︷︷ ︸
k [1](z(t))

, u(t) = k1z(t) + k2z
2(t)︸ ︷︷ ︸

k [2](z(t))

or

u(t) = k1z(t) + k2z
2(t) + k3z

3(t)︸ ︷︷ ︸
k [3](z(t))

.
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“Value Function” and its Derivative Along Solutions
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“Value Function” and its Derivative Along Solutions
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“Value Function” and its Derivative Along Solutions
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Evolution of System from z0 = −0.25
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Evolution of System from z0 = −0.95
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Rationale

Stability Region

While not true in general, the stability region often increases with the

inclusion of higher degree feedback terms.

Performance

The performance benefit is only guaranteed locally (small z0)

Goal

Approximate polynomial solutions to the HJB equations to provide these

higher degree feedback terms.

It is important to develop efficient computational tools to find these

approximating polynomial solutions for more realistic problems.
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Outline for the Remainder of the Talk

• Optimal feedback control problem

• A polynomial approximation algorithm

• Simplification: the quadratic-quadratic regulator (QQR)

• Model problem: feedback control for Burgers equation

• Conclusions and future work
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Recall the Optimal Control Problem

Find a control u(·) with u(t) ∈ Rm that solves

min
u

J(z , u) =

∫ ∞
0

g(z(s), u(s)) ds

subject to

ż(t) = f (z(t), u(t)), z(0) = z0 ∈ Rn.

Let the value function be v(z0) = J(z∗(·; z0), u∗(·)) and assume the

optimal control is given by

u(t) = K(z(t)).

For f , g , and v smooth enough, the feedback relation satisfies the

Hamilton-Jacobi-Bellman partial differential equations

0 =
∂v

∂z
(z)f (z ,K(z)) + g(z ,K(z))

0 =
∂v

∂z
(z)

∂f

∂u
(z ,K(z)) +

∂g

∂u
(z ,K(z)).
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Quadratic-Quadratic Regulator



HJB PDEs

The Nonlinear Systems Toolbox (Krener, 2015) has a routine hjb.m to

approximate the feedback relation based on an algorithm by Al’brekht

(PMM-Journal of Applied Mathematics and Mechanics, 25:1254-1266,

1961).

0 =
∂v

∂z
(z)f (z ,K(z)) + g(z ,K(z)) (1)

0 =
∂v

∂z
(z)

∂f

∂u
(z ,K(z)) +

∂g

∂u
(z ,K(z)). (2)
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Specializing Al’brekht’s Algorithm for QQR

Assume expansions for v and K as

v(z) = v2(z ⊗ z)︸ ︷︷ ︸
v [2](z)

+ v3(z ⊗ z ⊗ z)︸ ︷︷ ︸
v [3](z)

+ v4(z ⊗ z ⊗ z ⊗ z)︸ ︷︷ ︸
v [4](z)

+ · · ·

K(z) = k1z︸︷︷︸
k [1](z)

+ k2(z ⊗ z)︸ ︷︷ ︸
k [2](z)

+ k3(z ⊗ z ⊗ z)︸ ︷︷ ︸
k [3](z)

+ · · ·

as well as the quadratic expressions for f and g

f (z , u) = Az + Bu + N(z ⊗ z)

g(z , u) = q2(z ⊗ z) + r2(u ⊗ u)

with q2 = vec(Q2)T , Q2 = QT
2 ≥ 0 and r2 = vec(R2)T , R2 = RT

2 > 0.

Substitute these expansions into the HJB PDEs (1)-(2), match terms of

equal degree.
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Al’brekht’s Algorithm (cont.)

For example, collecting the degree two from (1) and degree one terms

from (2), leads to

v2 ((A + Bk1)⊗ In+In ⊗ (A + Bk1)) + q2(In ⊗ In) + r2(k1 ⊗ k1) = 0.

and

v2(B⊗ In + In ⊗ B) + r2(k1 ⊗ Im + Im ⊗ k1) = 0.

These can be rearranged as

(A + Bk1)TV2 + V2(A + Bk1) + kT
1 R2k1 + Q2 = 0

V2B + kT
1 R2 = 0

and upon substitution of k1 into the first equation,

ATV2 + V2A− V2BR−12 BTV2 + Q2 = 0

k1 = −R−12 BTV2.

Thus V2 solves the algebraic Riccati equation and k1 is the familiar

solution to the linear-quadratic regulator problem.
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Al’brekht’s Algorithm (cont.)

Let Ac = A + Bk1. Collecting degree three terms from (1)

v3 (Ac ⊗ In ⊗ In + In ⊗ Ac ⊗ In + In ⊗ In ⊗ Ac)

= −v2 ((N + Bk2)⊗ In + In ⊗ (N + Bk2))− r2 (k1 ⊗ k2 + k2 ⊗ k1) .

and the degree two terms from (2)

v3(B⊗ In2 + In2 ⊗ B) + r2(k2 ⊗ Im + Im ⊗ k2) = 0.

Recall the degree one terms from the previous page:

v2(B⊗ In + In ⊗ B) + r2(k1 ⊗ Im + Im ⊗ k1) = 0.

and identify all of the k2 terms in the top equation

−v2(Bk2 ⊗ In + In ⊗ Bk2)− r2(k1 ⊗ k2 + k2 ⊗ k1)

= (−v2(B⊗ In)− r2(Im ⊗ k1)) (k2 ⊗ In) + · · ·

So all of the k2 terms in the top equation vanish, and eqns decouple.

The first equation can be solved for v3, then inserted into the second

equation to compute k2. This pattern continues. . .
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Al’brekht’s Algorithm (cont.)

Let Ac = A + Bk1. Collecting degree three terms from (1)

v3 (Ac ⊗ In ⊗ In + In ⊗ Ac ⊗ In + In ⊗ In ⊗ Ac)

= −v2 ((N + Bk2)⊗ In + In ⊗ (N + Bk2))− r2 (k1 ⊗ k2 + k2 ⊗ k1) .

and the degree two terms from (2)

v3(B⊗ In2 + In2 ⊗ B) + r2(k2 ⊗ Im + Im ⊗ k2) = 0.

Recall the degree one terms from the previous page:

v2(B⊗ In + In ⊗ B) + r2(k1 ⊗ Im + Im ⊗ k1) = 0.

and identify all of the k2 terms in the top equation

−v2(Bk2 ⊗ In + In ⊗ Bk2)− r2(k1 ⊗ k2 + k2 ⊗ k1)

= (−v2(B⊗ In)− r2(Im ⊗ k1)) (k2 ⊗ In) + · · ·

So all of the k2 terms in the top equation vanish, and eqns decouple.

The first equation can be solved for v3, then inserted into the second

equation to compute k2. This pattern continues. . .
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Al’brekht’s Algorithm (cont.)

Let Ac = A + Bk1. Collecting degree three terms from (1)

v3 (Ac ⊗ In ⊗ In + In ⊗ Ac ⊗ In + In ⊗ In ⊗ Ac)

= −v2 ((N + Bk2)⊗ In + In ⊗ (N + Bk2))− r2 (k1 ⊗ k2 + k2 ⊗ k1) .

and the degree two terms from (2)

v3(B⊗ In2 + In2 ⊗ B) + r2(k2 ⊗ Im + Im ⊗ k2) = 0.

Recall the degree one terms from the previous page:

v2(B⊗ In + In ⊗ B) + r2(k1 ⊗ Im + Im ⊗ k1) = 0.

and identify all of the k2 terms in the top equation

−v2(Bk2 ⊗ In + In ⊗ Bk2)− r2(k1 ⊗ k2 + k2 ⊗ k1)

= (−v2(B⊗ In)− r2(Im ⊗ k1)) (k2 ⊗ In) + · · ·

So all of the k2 terms in the top equation vanish, and eqns decouple.

The first equation can be solved for v3, then inserted into the second

equation to compute k2. This pattern continues. . .
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Al’brekht’s Algorithm (cont.)

Let Ac = A + Bk1. Collecting degree three terms from (1)

v3 (Ac ⊗ In ⊗ In + In ⊗ Ac ⊗ In + In ⊗ In ⊗ Ac)

= −v2 ((N + Bk2)⊗ In + In ⊗ (N + Bk2))− r2 (k1 ⊗ k2 + k2 ⊗ k1) .

and the degree two terms from (2)

v3(B⊗ In2 + In2 ⊗ B) + r2(k2 ⊗ Im + Im ⊗ k2) = 0.

Recall the degree one terms from the previous page:

v2(B⊗ In + In ⊗ B) + r2(k1 ⊗ Im + Im ⊗ k1) = 0.

and identify all of the k2 terms in the top equation

−v2(Bk2 ⊗ In + In ⊗ Bk2)− r2(k1 ⊗ k2 + k2 ⊗ k1)

= (−v2(B⊗ In)− r2(Im ⊗ k1)) (k2 ⊗ In) + · · ·

So all of the k2 terms in the top equation vanish, and eqns decouple.

The first equation can be solved for v3, then inserted into the second

equation to compute k2. This pattern continues. . . 26



Simplified Description of the Al’brekht algorithm

Define the special Kronecker sum as

Ld(X) ≡ X⊗ · · · ⊗ In︸ ︷︷ ︸
d terms

+ · · ·+ In ⊗ · · · ⊗ X︸ ︷︷ ︸
d terms

.

Then we can write the higher degree terms in the value function as

L3(AT
c )vT

3 = −L2(NT )vT
2 . (3)

L4(AT
c )vT

4 = −L3((Bk2 + N)T )vT
3 − (kT

2 ⊗ kT
2 )rT2 , (4)

L5(AT
c )vT

5 =− L4((Bk2 + N)T )vT
4 − L3((Bk3)T )vT

3

− (k2 ⊗ k3 + k3 ⊗ k2)T rT2 .
(5)

and for all of these...

kd = −1

2
R−12

(
Ld+1(BT )vT

d+1

)
.
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Comments on our Special Kronecker Sum Systems

• These systems are consistent with the linear-quadratic regulator

problem.

• If we perform a Schur factorization of Ac , we can make Ld(Ac)

upper triangular. (but a direct solve would be ≈ O(n2d) work)

• Ac is a stable matrix, by the above, the eigenvalues of Ld(Ac) are

sums of the eigenvalues of Ac . (these systems are solvable for vd)

• A block recursive algorithm by Chen and Kressner, which is suitable

for more general Kronecker sum systems, can be used here. (the

complexity is just ≈ O(nd+1) work)

• The assembly of the RHS can also be performed efficiently (products

of Ldvd)

• Software is available on Github (github.com/jborggaard/QQR)
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Burgers



Nonlinear Feedback for Burgers Equation

Find u(·) that minimizes

J(z , u) =

∫ ∞
0

(∫ 1

0

z2(x , t) dx + uT (t)Ru(t)

)
dt

subject to

ż(x , t) = εzxx(x , t)− 1

2

(
z2(x , t)

)
x

+
m∑

k=1

χ[(k−1)/m,k/m](x)uk(t)

z(·, 0) = z0(·) ∈ H1
per(0, 1).

Discretize with 14 linear FE (n = 14), m = 6, and take ε = 0.005.

Approximate the quadratic-quadratic regulator to compute the control.
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Open Loop

Figure 1: Open Loop Cost to t = 15 is 0.215602
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Closed Loop Simulation, d = 1 and d = 2

Closed Loop Simulation: Cost is

3.09792e-03

Closed Loop Simulation: Cost is

3.09443e-03

Similar results for d = 3 (Cost is 3.07617e-03).
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Recursive Blocked Solvers for Kronecker Sum Systems

For m = 3 on this laptop with:

d = 3 feedback law for order n = 64 computed in 130.2 seconds

d = 4 feedback law for order n = 32 computed in 182.9 seconds

d = 5 feedback law for order n = 20 computed in 156.3 seconds
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van der Pol oscillators



Cubic-Quadratic Regulator Problems

• As a second test case, we consider controlling a ring of van der Pol

oscillators.

ÿi + (y2
i − 1)ẏi + yi = yi−1 − 2yi + yi+1 + biui (t),

for i = 1, . . . , g with yi (0) = 0.3 and ẏi (0) = 0.

• We identify yg+1 = y1 and yg = y0 to close the ring.

• The stability of this system was studied in Nana and Woafo 2006

and a related control problem considered in Barron 2016.

• Choosing different values of g and rewriting as a first-order system

of differential equations allows us to study the cubic-quadratic

regulator problem for problems of size n = 2g .

• We set bi as 0 or 1 with m = ‖b‖1.
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Convergence of the Value Function with Increasing Degree

Experiment: g = 4, b1 = b2 = 1.

Table 1: van der Pol: Value Function Approx.

d
∑d+1

i=2 v [i ](z0)
∫ 50

0
g(z(t),u(t))dt

1 4.6380 4.4253

2 4.6380 4.4253

3 4.4125 4.4208

4 4.4125 4.4208

5 4.4246 4.4208

6 4.4246 4.4208

7 4.4242 4.4208
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Improving Stability Region

Experiment: g = 6, b1 = b2 = 1.

Derivative Along Solutions

-10 -8 -6 -4 -2 0 2 4 6 8 10

Variable 1

-10

-8

-6

-4

-2

0

2

4

6

8

10

V
ar

ia
bl

e 
2

Value Function

-10 -8 -6 -4 -2 0 2 4 6 8 10

Variable 1

-10

-8

-6

-4

-2

0

2

4

6

8

10

V
ar

ia
bl

e 
2

Left: Derivative of v [2] along solutions (v [2] is positive definite)

Right: The value function
∑5

d=2 v
[d ] (the derivative along solutions is

negative definite)
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Conclusions and Future Work

Conclusions

• Reasonably fast computation of low degree feedback for the

quadratic-quadratic regulator problem.

• A similar structure appears in the cubic-quadratic regulator problem,

etc.

• These allow for higher degree feedback computation with many

mathematical models of interest, including flow control problems.

Future Work

• Add a special version for more general costs: g(z , u).

• Develop quadratic model reduction for the flow control problem.

• Test this methodology on flow control problems for ability to expand

stability region of closed loop system.
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Extra Slides
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Re = 100, g = 1 Case: Closed Loop From t = 10
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Influence of Controlled Nodes

8 oscillators and 4 controls

Table 2: van der Pol: Value Function Approx.

nodes linear cubic quintic

(1,2,3,4) 77.9977 blow-up 75.7120

(1,2,3,5) 29.9355 29.1139 29.0181

(1,2,3,6) 8.3986 8.3910 8.3910

(1,2,4,5) 29.4803 28.6854 28.5952

(1,2,4,6) 7.7364 7.7293 7.7292

(1,2,4,7) 6.9549 6.9489 6.9489

(1,2,5,6) 8.8505 8.8417 8.8417
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